Galois Functors and Entwining Structures

نویسندگان

  • BACHUKI MESABLISHVILI
  • ROBERT WISBAUER
چکیده

Galois comodules over a coring can be characterised by properties of the relative injective comodules. They motivated the definition of Galois functors over some comonad (or monad) on any category and in the first section of the present paper we investigate the role of the relative injectives (projectives) in this context. Then we generalise the notion of corings (derived from an entwining of an algebra and a coalgebra) to the entwining of a monad and a comonad. Hereby a key role is played by the notion of a grouplike natural transformation g : I → G generalising the grouplike elements in corings. We apply the evolving theory to Hopf monads on arbitrary categories, and to comonoidal functors on monoidal categories in the sense of A. Bruguières and A. Virelizier. As well-know, for any set G the product G ×− defines an endofunctor on the category of sets and this is a Hopf monad if and only if G allows for a group structure. In the final section the elements of this case are generalised to arbitrary categories with finite products leading to Galois objects in the sense of Chase and Sweedler.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morita Theory for Coring Extensions and Cleft Bicomodules

A Morita context is constructed for any comodule of a coring and, more generally, for an L-C bicomodule Σ for a coring extension (D : L) of (C : A). It is related to a 2-object subcategory of the category of k-linear functors M → M. Strictness of the Morita context is shown to imply the Galois property of Σ as a C-comodule and a Weak Structure Theorem. Sufficient conditions are found also for a...

متن کامل

On Modules Associated to Coalgebra Galois Extensions

For a given entwining structure (A,C)ψ involving an algebra A, a coalgebra C, and an entwining map ψ : C ⊗ A → A ⊗ C, a category MA(ψ) of right (A,C)ψmodules is defined and its structure analysed. In particular, the notion of a measuring of (A,C)ψ to (Ã, C̃)ψ̃ is introduced, and certain functors between M C A(ψ) and M Ã (ψ̃) induced by such a measuring are defined. It is shown that these functors ...

متن کامل

Separable functors in corings

We develop some basic functorial techniques for the study of the categories of comodules over corings. In particular, we prove that the induction functor stemming from every morphism of corings has a left adjoint, called ad-adjoint functor. This construction generalizes the known adjunctions for the categories of Doi-Hopf modules and entwining structures. The separability of the induction and a...

متن کامل

O ct 2 00 6 PARTIAL ENTWINING STRUCTURES

We introduce partial (co)actions of a Hopf algebra on an algebra A. To this end, we introduce first the notion of lax coring, generalizing Wisbauer's notion of weak coring. We also have the dual notion of lax ring. We then introduce partial and lax entwining structures. Several duality results are given, and we develop Galois theory for partial entwining structures.

متن کامل

The 2-category of Weak Entwining Structures

A weak entwining structure in a 2-category K consists of a monad t and a comonad c, together with a 2-cell relating both structures in a way that generalizes a mixed distributive law. A weak entwining structure can be characterized as a compatible pair of a monad and a comonad, in 2-categories generalizing the 2-category of comonads and the 2-category of monads in K , respectively. This observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009